Manifolds and Group actions

Homework 12

Mandatory Exercise 1. (10 Points) In this exercise we prove the following
Theorem 1. Let G be a Lie group and H a closed subgroup. Then G / H is a manifold and its tangent space at $e H$ is $\mathfrak{g} / \mathfrak{h}$. The quotient $\operatorname{map} G \rightarrow G / H$ is a principal H-bundle.
a) Check that the action of H on G is proper. Show that G / H is Hausdorff.

For every coset of H in G, we will construct an neighborhood of $g H$ that is equivariantly diffeomorphic to $U \times H$, where $U \subset \mathbb{R}^{k}$ is open.
b) Let $N \subset \mathfrak{g}$ be a linear subspace such that $\mathfrak{g}=N \oplus \mathfrak{h}$. Define $\Psi: N \times H \rightarrow G$ by $\Psi(X, g)=$ $\exp (X) g$. Note that Ψ is H-equivariant from the right, i.e. $\Psi(X, g h)=\Psi(X, g) h$. Check that the differential

$$
\left.d \Psi\right|_{(0, e)}: N \oplus \mathfrak{h} \rightarrow \mathfrak{g}
$$

is the identity. Show that $\left.d \Psi\right|_{(0, g)}$ is bijective for all $g \in H$.
c) Construct a neighborhood V of 0 in N such that $\left.d \Psi\right|_{(X, g)}$ is a bijection for all $X \in V$ and $g \in H$.
d) Show that $\Psi: V \times H \rightarrow G$ is a local diffeomorphism.
e) Show that one can find a neighborhood $U \subset V$ of 0 such that $\left.\Psi\right|_{U \times V}$ is an equivariant diffeomorphism to its image (which contains H).
f) Show that every coset of H has a neighborhood of this form.

Mandatory Exercise 2. (5 Points) Let $S^{2} \subset \mathbb{C} \times \mathbb{R}$ and $S^{1} \subset \mathbb{C}$. Then S^{1} acts on S^{2} via the formula $z \cdot(w, h)=(z w, h)$.
a) Describe the action (i.e. say if the action is free, proper, transivite, effective; find orbits and stabilizers), and the quotient space S^{2} / S^{1}.
b) Show that the antipodal map commutes with the action described above. Explain how this defines an action of S^{1} on $\mathbb{R P}^{2}$.
c) Investigate this action of S^{1} on $\mathbb{R} \mathbb{P}^{2}$ and describe the quotient space.
d) Now view $\mathbb{R P}^{2}$ as the set of lines in \mathbb{R}^{3}, with homogeneous coordinates $[x, y, z]$. Let $S O(2)=$ S^{1} act on this via $A \cdot[x, y, z]=[A(x, y), z]$. Show that this is the same action as defined in b).

Mandatory Exercise 3. (5 Points) Let $\pi: P \rightarrow M$ be a principal G-bundle. Assume that P has a section, i.e a map $\sigma: M \rightarrow P$ such that $\pi \circ \sigma(x)=x$ for all $x \in M$. Show that P is isomorphic to $M \times G$ as a principal G-bundle.

Hand in on 17 th of July in the pigeonhole on the third floor.

